学习工作经历
王琦,中国工程物理研究院材料研究所副研究员,博士生导师。2011年本科毕业于山东大学材料学院,2016年博士毕业于清华大学材料学院,2017年-2020年先后在美国劳伦斯伯克利国家实验室(Lawrence Berkeley National Laboratory)、美国约翰霍普金斯大学(Johns Hopkins University)从事博士后研究。以第一作者/通讯作者在Nature、Nature Communications、Science Advances、NPJ Computational Materials、Acta Materialia等国际知名期刊发表论文20余篇,引用数超过1800次。2021年入选第四届“军事科技领域青年人才托举工程”,先后获评中国材料大会非晶与高熵合金分会“杰出青年科学家奖”、首届江油市“十大杰出青年”、中物院“十大青年锐杰”等,研究成果获评中国工程物理研究院2022年第十八届学术年会“年度科技创新Top10”(排名第1)。主持并作为研究骨干参与多项国家、省部级研究项目。
主要研究成果
【近五年部分代表性工作】(1) Xuefei Chen#, Qi Wang# (co-first author), Zhiying Cheng#, Mingliu Zhu, Hao Zhou, Ping Jiang, Lingling Zhou, Qiqi Xue, Fuping Yuan, Jing Zhu*, Xiaolei Wu* and En Ma*. Direct observation of chemical short-range order in a medium-entropy alloy. 《Nature》, 592: 712-716 (2021). https://doi.org/10.1038/s41586-021-03428-z,入选ESI高引; (2) Qi Wang* and Longfei Zhang. Inverse design of glass structure using deep graph neural networks. 《Nature Communications》, 12: 5359 (2021). https://doi.org/10.1038/s41467-021-25490-x,入选编辑推荐文章(Editors' Highlights); (3) Qi Wang*, Long-Fei Zhang, Zhen-Ya Zhou, Hai-Bin Yu*. Predicting the pathways of string-like motions in metallic glasses via path-featurizing graph neural networks. 《Science Advances》, 10: eadk2799 (2024). https://doi.org/10.1126/sciadv.adk2799; (4) Qi Wang* and Anubhav Jain*. A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses. 《Nature Communications》, 10: 5537 (2019). https://doi.org/10.1038/s41467-019-13511-9; (5) Qi Wang*, Jun Ding*, Longfei Zhang, Evgeny Podryabinkin, Alexander Shapeev and Evan Ma. Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning. 《NPJ Computational Materials》, 6: 194 (2020). https://doi.org/10.1038/s41524-020-00467-4; (6) Lingling Zhou#, Qi Wang# (co-first author), Jing Wang, Xuefei Chen, Ping Jian, Fuping Yuan, Xiaolei Wu*, Zhiying Cheng* and En Ma*. Atomic-scale evidence of chemical short-range order in CrCoNi medium-entropy alloy. 《Acta Materialia》, 224: 117490 (2022). https://doi.org/10.1016/j.actamat.2021.117490